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Abstract. Most of the existing feasibility results on Byzantine Agreement (BA)
are of an all-or-nothing fashion: in Broadcast they address the question whether
or not there exists a protocol which allows any player to broadcast his input.
Similarly, in Consensus the question is whether or not consensus can be reached
which respects pre-agreement on the inputs of all correct players. In this work,
we introduce the natural notion of player-centric BA which is a class of BA prim-
itives, denoted as PCBA = {PCBA(C)}C⊆P , parametrized by subsets C of the
player set. For each primitive PCBA(C) ∈ PCBA the validity is defined on the
input(s) of the players in C. Broadcast (with sender p) and Consensus are special
(extreme) cases of PCBA primitives for C = {p} and C = P , respectively.
We study feasibility of PCBA in the presence of a general (aka non-threshold)
mixed (active/passive) adversary, and give a complete characterization for per-
fect, statistical, and computational security. Our results expose an asymmetry of
Broadcast which has, so far, been neglected in the literature: there exist non-trivial
adversaries which can be tolerated for Broadcast with sender some pi ∈ P but
not for some other pj ∈ P being the sender. Finally, we extend the definition
of PCBA by adding fail corruption to the adversary’s capabilities, and give ex-
act feasibility bounds for computationally secure PCBA(P) (aka Consensus) in
this setting. This answers an open problem from ASIACRYPT 2008 concerning
feasibility of computationally secure multi-party computation in this model.

1 Introduction

Byzantine agreement (BA) is one of the most studied problem in the areas of dis-
tributed protocols and multi-party computation. The problem was introduced by Lam-
port, Shostak, and Pease [26], where first solutions were also suggested. The high-level
goal is to have n players agree on an output-value, where some (dishonest) players
might try to prevent the others from reaching agreement. The potential dishonesty of
players is modeled by considering a central adversary who corrupts players. The three
most typical corruption types are active corruption (the adversary takes full control over
the player), passive corruption (the adversary sees the player’s internal state), and fail
corruption (the adversary can make the player crash at some point during the protocol).

BA comes in two flavors, namely Consensus and Broadcast. In Consensus, every
player has an input and it is required that they all agree on an output-value y (consis-
tency), where if all correct players have the same input x then the output is y = x
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(validity). In Broadcast, only one player, called the sender, has input, and the require-
ments are that all players should agree on an output-value y (consistency), such that if
the sender correctly follows the protocol then y equals his input (validity).3

A protocol is said to perfectly A-securely realize Consensus or Broadcast, if it
achieves the above properties with probability 1, in the presence of a computation-
ally unbounded adversary A. If a protocol satisfies the above properties, except with
negligible probability, in the presence of a computationally bounded (resp. unbounded)
adversary, then we say this protocol computationally (resp. statistically) A-securely re-
alizes the corresponding primitive.

Known results The first results on BA considered a threshold adversary who actively
corrupts up to t players. In particular, in [27, 26] it was shown that when no setup is as-
sumed, Consensus and Broadcast are possible if and only if less than a third of the play-
ers are malicious (i.e., t < n/3). This model has been extensively studied [10, 29, 12,
8, 9, 2, 17] and protocols with optimal resiliency and complexity (communication and
computation) polynomial in the number of players were suggested. Later solutions [11,
4, 28, 6] considered a setting where a setup allowing digital signatures is available, and
showed that Broadcast tolerating an arbitrary number of cheaters (t < n) is possible,
whereas Consensus is possible if and only if t < n/2; for both primitives corresponding
protocols with optimal resiliency and complexity polynomial in the number of players
were suggested.4 Lamport and Fischer [25] considered an adversary who can fail cor-
rupt up to t players, and showed that any n − 1 players being fail corrupted can be
tolerated for Broadcast. The above results were unified in [18] where it was shown that
if at most ta players are actively corrupted and, simultaneously, at most tf are fail cor-
rupted, and no setup is assumed, then 3ta + tf < n is a tight bound on feasibility of
BA. In [23], it was observed that when a setup is assumed then the existing protocols
for Broadcast and Consensus do not work for an adversary who can actively and, simul-
taneously, passively corrupt players. The reason is that in such a model the signatures
of passively corrupted players are not reliable, as the adversary knows the signing keys
and can trivially fake them. In [21] it is shown that given a Public-Key Infrastructure
(PKI), an adversary who can actively corrupt up to ta players and passively corrupt up
to tp players can be tolerated for Consensus if and only if 2ta +min{ta, tp} < n.

Our Contributions We put forward a player-centric approach to BA by introducing
the class PCBA = {PCBA(C)}C⊆P parametrized by subsets C of the player set P . Each
primitive PCBA(C) ∈ PCBA has the same consistency property as traditional BA but
the validity property is defined with respect to the specific set C. In fact, Broadcast (with
sender p) and Consensus are special cases of PCBA primitives for C = {p} and C = P ,
respectively.

We prove general negative and positive results translating feasibility statements for
different PCBA primitives (i.e., for PCBA(C) with different choices of C), in the pres-
ence of a mixed active/passive adversary. In particular, we show under which conditions

3 We point out that some works use the word “persistency” to refer to the validity property of
Consensus; furthermore, in some works the term Byzantine agreement refers exclusively to
Consensus.

4 In fact feasibility of Broadcast for t < n when a setup is available was also proved in [26], but
the suggested protocol has exponential communication complexity.
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we can construct PCBA(C) if we assume PCBA(C′) for C′ 6= C. This characterization
allows to translate feasibility results for PCBA(C) for specific choices of C to results
about the traditional notions of BA (i.e., Broadcast and Consensus) and vice-versa. Fur-
thermore, we provide exact feasibility bounds for PCBA, for an arbitrary choice of C,
tolerating a general adversary who might actively and passively corrupt players, simul-
taneously. Our results are for perfect security and, assuming a setup which allows for
generation and verification of digital signatures, for statistical and computational secu-
rity. Our characterization specifies the set of players who can securely broadcast their
input. In fact, as we show, there are non-trivial adversary structures for which this set is
neither empty nor the complete player set P . To the best of our knowledge, this is the
first work to explore this asymmetry of Broadcast. Note that in this model, with the ex-
ception of perfect security, exact bounds are not even known for traditional BA. All our
protocols are efficient in the size of the player set and the representation of the inputs.
Furthermore, unless some signature is forged, our protocols achieve perfect security.

As an extension of our results, we show how to define PCBA in a setting where the
adversary can actively, passively, and fail corrupt players, simultaneously. For this set-
ting, we give an exact feasibility bound for computationally secure PCBA(P) (aka Con-
sensus), assuming a PKI. This result answers an open problem from ASIACRYPT 2008
that concerns feasibility of computationally secure multi-party computation (MPC) and
secure function evaluation (SFE) in this model. In particular, in [23], a complete char-
acterization of computationally secure MPC and SFE assuming Broadcast was proved.
Because an exact bound for Consensus is trivially necessary for SFE (hence, also for
MPC) and sufficient for Broadcast, our result fills the gap left open in that work.

Related Work BA in the general adversary model was considered in [16, 1], where
exact feasibility bounds for an adversary who can actively corrupt and/or fail corrupt
players were proved. However, these works consider the model without a setup and their
impossibility results are only for Consensus. We point out that, in that model, adding
passive corruption makes no difference for Consensus [5]. Feasibility of BA with active
and passive corruption (and a trusted PKI) was previously studied in [21] for Consen-
sus, and in [20] for Consensus and Broadcast. In both works, a threshold adversary
is considered; the corresponding bound for Consensus is 2ta + min{ta, tp} < n. In
such a threshold world, constructing BA protocols for the corresponding bound turns
out to be less involved than in the general-adversary setting, as one can consider the
cases ta ≤ tp and ta > tp separately, and construct one protocol for each. Finally, the
intermediate ground between Broadcast and Consensus was partially explored in [13],
where a variant of Consensus was considered with the property that if more than n/2
honest parties have the same input-value then the output is this value.

2 The Model

We consider a setP = {p1, . . . , pn} of n players who can communicate with each other
through a complete network of bilateral synchronous authenticated channels. Further-
more, we consider a general active/passive adversary, i.e., the adversary’s corruption
capability is characterized by an adversary structure which is a monotone set of pairs of
player sets, i.e., Z = {(A1, E1), . . ., (Am, Em)} (for some m). The adversary chooses
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a class in Z non-adaptively i.e., before the beginning of the protocol; this class is de-
noted as Z? = (A?, E?) and is called the actual adversary class or simply the actual
adversary. The players in A? and E? are actively and passively corrupted, respectively.
Note that Z? is not known to the players and appears only in the security analysis.
For notational simplicity we assume that A ⊆ E for any (A,E) ∈ Z (intuitively, an
actively corrupted player can behave as being passively corrupted). To simplify the de-
scription, we adopt the following convention: Whenever a player does not receive a
message (when expecting one), or receives a message outside of the expected range,
then the special symbol ⊥ is taken for this message. Moreover, we say that a player
is correct at a certain point of the protocol if he has followed the protocol instructions
correctly up to that point.

Digital Signatures For computational and statistical security, we assume a trusted
setup which allows the players to generate and verify digital signatures, e.g., a PKI, with
the respective security. We make the standard assumption on the security of the used
signature-scheme, namely existential unforgeability under chosen-message attacks. In
slight abuse of notation, we refer to signatures that unconditionally satisfy this defini-
tion, except with negligible probability, as information theoretically (i.t.), or statistically
secure. Note the no construction of such i.t. secure signatures is known. Nevertheless,
for our construction i.t. pseudo-signatures of the type used in [28] would also be suf-
ficient. We denote by sigi(x) the signature of player pi (i.e., generated using pi’s pri-
vate key) to message x. We say that some value σi is a valid signature with signer pi
(or simply pi’s valid signature) on a message x, if the signature-verification algorithm
(given pi’s public key) accepts this signature as valid for the message x. Without loss of
generality, we assume that every signature includes a unique signer ID, round ID, and
message ID so that it can be linked to the signer and the specific round of the protocol
in which it was generated.

Passive Corruption and Forgery Passive corruption allows the adversary to see the
internal state of the corrupted players. This includes the private (signing) keys of these
players. Hence, for a passively corrupted player pi, the adversary can trivially produce
signatures with signer pi on any message of her choice. Therefore, we will only use the
term “forgery” for signatures of players who are not passively (or actively) corrupted.

3 Definition and Reductions

Consensus and Broadcast differ in their respective validity property. In particular,
Broadcast defines validity with respect to the input of one specific player, the sender,
whereas Consensus considers the inputs of every player in P . A natural question which
arises is: “why should one restrict the definition of BA primitives to these two extreme
cases?” In fact, one can find real world scenarios where agreement on the inputs of a
subset of parties is desirable, e.g., a network where a dedicated set of master-routers
needs to agree on the status of certain links, in order to compute routing-paths. Further-
more, considering such intermediate cases might lead to more efficient protocols for BA
and, more general, secure distributed computation in cases where only a subset of the
parties need to provide input. This leads naturally to the definition of a new class of BA
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primitives, called player-centric BA and denoted as PCBA = {PCBA(C)}C⊆P , which
is parametrized by non-empty subsets C of the player set P . All the members of the
class PCBA have the same consistency property as in the original definitions of BA, but
the validity property of each PCBA(C) ∈ PCBA is defined on the inputs of the players
in C. More precisely, in PCBA(C), every pi ∈ C has an input xi and the goal is that all
players in P agree on an output-value y, such that if every non-actively corrupted player
in C has input x, then y = x. More formally, we say that a protocol perfectlyZ-securely
realizes PCBA(C) among the players in P , if it satisfies the following properties in the
presence of a Z-adversary:

– (Consistency) There exists some y such that every pj ∈ P \A? outputs y.5

– (C-Validity) If every pi ∈ C\A? has the same input xi = x, then every pj ∈ P \A?

outputs y = x.

If a protocol satisfies the above properties except with negligible probability in the pres-
ence of a computationally bounded (resp. unbounded)Z-adversary, then we say that the
protocol computationally (resp. statistically) Z-securely realizes PCBA(C). As in most
of the synchronous BA literature, all the protocols presented in this work trivially sat-
isfy the following termination property: For every pi ∈ P \ A? the protocol terminates
after a finite number of rounds; to save space we omit it in our security analysis. We
point out that the above definition requires that the inputs of all non-actively corrupted
players (even those that are passively corrupted) are considered. This is the most natural
way of defining PCBA in the mixed active/passive model and it is consistent with the
past literature on secure distributed computation tolerating a mixed adversary, e.g. [14,
22, 24, 5, 23], as well as the literature tolerating passive corruption only (semi-honest
model), e.g., [30, 19, 7].

Remark 1 (Authenticated Channels). Consistently with the existing BA literature, our
definition of PCBA(C) requires that the inputs of all p ∈ C \ A? (even those that are
passively corrupted) are considered. To meet this requirement, authenticated channels
are necessary. Indeed, when such channels are not given and are simulated, e.g., by dig-
ital signatures or MACs, then this requirement can trivially be violated. For a detailed
discussion on secure computation without authentication we refer to [3].

Note that Broadcast (with sender p) and Consensus are special cases of PCBA for
C = {p} and C = P , respectively. However, most past results on feasibility of Broad-
cast, including the ones considering a general adversary [22, 1], are concerned with
whether or not there exists a protocol which achieve PCBA({p}) for every p ∈ P . In
the remaining of this section we prove results which allow us to translate statements
about feasibility of PCBA(C) for different choices of C ⊆ P . All results in the current
section hold for all three security levels, i.e., perfect, statistical, and computational; fur-
thermore, all the negative results hold even when a trusted key-setup allowing digital
signatures is assumed. The proofs have been moved to the full version of this paper.

An Inherent Impossibility As with Consensus, the definition of PCBA(C) only
makes sense if there are no two actively corruptible sets that cover the set C. More

5 Recall that A? denotes the set of actively corrupted players.
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precisely, for a player set C ⊆ P , let C(2)
a (P,Z, C) denote the following condition:

C(2)
a (P,Z, C)⇔ ∀(A1, E1), (A2, E2) ∈ Z : A1 ∪A2 6= C

One can verify that when C(2)
a (P,Z, C) does not hold, then no protocol can achieve

PCBA(C), as the parties would have to be able to distinguish the setting where the
players in A1 are corrupted from the setting where the players in A2 are corrupted
(even when the corrupted players behave correctly).

The following lemma states that if for a non-empty set C a Z-secure protocol for
PCBA(C) exists and the adversary cannot actively corrupt every pi ∈ C simultaneously,
then Broadcast with sender any player pi ∈ P (i.e., any player in the complete player
set) is possible.

Lemma 1 (Broadcast from PCBA(C)). If for some (non-empty) set C ⊆ P there ex-
ists a protocol for Z-securely realizing PCBA(C) and the condition ∀(A,E) ∈ Z :
C 6⊆ A holds, then for every p ∈ P there exists a protocol which Z-securely realizes
PCBA({p}) (i.e., Broadcast with sender p).

The above lemma can be generalized to compare arbitrary subsets of P with respect to
feasibility of PCBA as follows:

Lemma 2 (PCBA(C′) from PCBA(C)). If for a (non-empty) set C ⊆ P , there exists a
protocol for Z-securely realizing PCBA(C) and the condition ∀(A,E) ∈ Z : C 6⊆ A
holds, then for every (non-empty) set C′ ⊆ P , for which the condition

(
(|C′| = 1) ∨

C(2)
a (P,Z, C′)

)
holds, there exists a protocol which Z-securely realizes PCBA(C′).

Corollary 1. Assuming that for some (non-empty) set C ⊆ P the condition
C(2)

a (P,Z, C) holds, there exists a protocol for Z-securely realizing PCBA(C) if and
only if for every (non-empty) C′ ⊆ C for which C(2)

a (P,Z, C′) holds there exists a pro-
tocol which Z-secure realizes PCBA(C′).

4 Perfect Security

In this section we study the case of perfect security and prove an exact bound for player-
centric BA tolerating a general active/passive adversary. The bound is stated in the
following theorem:

Theorem 1. Assuming |P| ≥ 3,6 there exists a perfectly Z-secure PCBA(C) pro-
tocol for some C ⊆ P if and only if the condition Cperf

PCBA(P,Z, C) holds,
where Cperf

PCBA(P,Z, C) ⇐⇒ C(3)
a (P,Z, C) ∧

(
|C| = 1 ∨ C(2)

a (P,Z, C)
)
, and

C(3)
a (P,Z, C)⇐⇒ ∀(A1, E1), (A2, E2), (A3, E3) ∈ Z : A1 ∪A2 ∪A3 6= P.

The sufficiency of the above condition is straight-forward: In [15] a Consensus (i.e.,
PCBA(P)) protocol was given which is Z-secure when C(3)

a (P,Z, ·) holds. Because

6 The case |P| < 3 is of no interest, as PCBA(C) is either impossible (which happens when
|C| = 2 and C(2)

a (P,Z, C) is violated) or trivial.
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the condition C(3)
a (P,Z, ·) implies C(2)

a (P,Z,P), if |C| = 1 then the sufficiency fol-
lows from Lemma 1 (feasibility of broadcast with sender the player p ∈ C), other-
wise Lemma 2 implies that there exist a PCBA(C) protocol for every C for which
C(2)

a (P,Z, C) holds. The necessity of the condition Cperf
PCBA(P,Z, C) for PCBA(C) is

proved in the full version of this paper.

5 Statistical and Computational Security (with Setup)

In this section we consider Z-secure player-centric Byzantine Agreement in a setting
where a setup allowing secure signatures. e.g., a Public-Key Infrastructure (PKI), is
assumed. We point out that, unless some signature is forged, all the protocols in this
section are perfectly secure. Therefore, our constructed protocols are as secure as the
underlying signature scheme. The following theorem, states an exact bound for feasibil-
ity of PCBA(C) for an arbitrary set C ⊆ P , tolerating a Z-adversary who can actively
and passively corrupt players.

Theorem 2. Assuming that |P| ≥ 3 and a setup which allows for genera-
tion/verification of computationally (resp. statistically) secure digital signatures is
given, there exists a protocol which computationally (resp. statistically) Z-secure re-
alizes PCBA(C) for a non-empty set C ⊆ P if and only if the condition Cc/s

PCBA(P,Z, C)
holds, where Cc/s

PCBA(P,Z, C)⇔ C(5)
PCBA(P,Z, C) ∧

(
(|C| = 1) ∨ C(2)

a (P,Z, C)
)
, and

C(5)
PCBA(P,Z, C)⇐⇒

{
∀(A1, E1), (A2, E2), (A3, E3) ∈ Z :
A1 ∪A2 ∪

(
E1 ∩ E2 ∩A3

)
= P ⇒ (E1 ∩ E2 ∩A3) ∩ C = ∅

The necessity of the condition is proved in the full version. In the remaining of
this section, we prove the sufficiency of Cc/s

PCBA(P,Z, C) for the existence of Z-secure
PCBA(C). The proof proceeds in two steps: In a first step (Sub-section 5.1), we con-
struct a PCBA({p}) protocol which is Z-secure when the condition C(5)

PCBA(P,Z, {p})
is satisfied. In a second step (Sub-section 5.2), we use this protocol to construct a pro-
tocol for PCBA(C) which is Z-secure when Cc/s

PCBA(P,Z, C) is satisfied.

5.1 PCBA({p}) (Broadcast with sender p)

For simplicity we construct a bit-broadcast protocol; using standard techniques, one
can extend it to broadcast any message. The high-level idea is the following: first, in a
distribution phase, the sender p sends his input and his signature on it to every player;
in a second phase, all the players run a protocol to establish a consistent view on the
sender’s value. Although this sounds similar to the standard approach for construct-
ing a Broadcast protocol [8, 1] (i.e., first have p multi-send his input and then invoke
Consensus), our second phase cannot be realized by a Consensus protocol as the con-
dition C(5)

PCBA(P,Z, {p}) is weaker than Cc/s
PCBA(P,Z,P) which is necessary for Con-

sensus. Nevertheless, to realize the second phase we use an approach which is inspired
by the methodology of [8] for achieving Consensus. More precisely, we build sub-
protocols which achieve gradually stronger consistency properties, and compose them
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in a clever way to construct the Broadcast protocol. We denote these sub-protocols as
MakeConsistent,GradeConsistency, and UseKing.

Because our protocols cannot achieve Consensus, the message which is distributed
by the sender in the first phase plays a central role in the construction. In particular, in
each sub-protocol, the players have input this message along with the sender’s signature.
To deal with a sender who never sends his signature to any player, we use the following
technical trick: Each pi ∈ P keeps a local bit (throughout the whole protocol) αi which
indicates whether or not, according to pi’s view, the sender p is actively corrupted.
Initially αi = 0. If pi detects that the sender is misbehaving then he sets αi := 1. When
some pi has set αi = 1 then pi will accept any value as p’s correct signature on any
bit (without invoking the signature verification algorithm). This trick makes sure that,
when no player receives a signature from p then every pi sets αi := 1 and hence any
value is acceptable as p’s signature on any bit. As syntactic sugar we say that some
value σ is a (p, pi)-acceptable signature on x if pi ∈ P accepts σ as p’s signature on
x (i.e, σ is valid or αi = 1); for a player set C we say that σ is a (p, C)-acceptable
signature on x if for every pi ∈ C the value σ is a (p, pi)-acceptable signature on x.7

Remark 2 (The use of signatures). The player use signatures for detecting and exposing
passive corruption. In particular, often in our sub-protocols a player pi is instructed to
send a message m to some pj along with his signature sigi(m) on it, so that pj has
a proof that he indeed got this message from this sender in the corresponding round.8

However, if pi is passively corrupted, the adversary might introduce into the protocol
arbitrary signatures with signer pi. To cope with this behavior, we have pj forward pi’s
signature sigi(m) to every player as soon as he receives it. This way, if some party
presents to pj a (fake) signature with sender pi and the same ID’s (round and message
ID) as sigi(m), then pj can prove to every player that pi ∈ E?.

In the following we sketch the sub-protocols MakeConsistent,GradeConsistency, and
UseKing, and specify the achieved security properties. Due to space limitation, many of
the protocols along with their security analysis have been removed, and will be included
in the full version of this paper. We stress that the security properties are guaranteed
only when at the beginning of the protocol the following two conditions hold: (1) Every
pi ∈ P \ A? holds as input a pair (xi, σi) such that σi is a (p,P)-acceptable signature
on xi with round ID corresponding to the distribution phase, and (2) when p ∈ P \ A?

then for some x and for every pi ∈ P \A?: xi = x and αi = 0. To keep the description
short, we introduce the following notation: We say that the input state is (p, x)-well-
formed if it satisfies the above two conditions. The invariant in all sub-protocols is that
if the input state is (p, x)-well-formed then the output state is also (p, x)-well-formed.
Distribution Phase Before describing the three sub-protocols, we describe the proto-
col Send (see next page) used in the distribution phase for p to send his input along with
his signature. The protocol achieves a (p, x)-well-formed state, where x is p’s input.

Lemma 3. Assuming that no signature is forged, protocol Send(P,Z, p, x) achieves a
(p, x)-well-formed state.

7 Note that, for any pj 6= p, only pj’s valid signature, i.e., the one matching pj’s public key, can
be (pj , pi)-acceptable.

8 Recall that every signature has a unique signer ID, message ID, and round ID.
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Protocol Send(P,Z, p, x)
1. p sends x along with his signature on it to every pj who denotes the received value

as xj and the corresponding signature as σj ; if pj does not receive a message with
a valid signature then he sets αj := 1.

2. Every pi ∈ P forwards (xi, σi) to every pj . If pj did not receive a consistent
pair (xj , σj) in Step 1 and receives one in Step 2 from some pi then he adopts it.
Otherwise pj sets (xj , σj) := (0,⊥).

MakeConsistent As the name suggests, protocol MakeConsistent ensures that there
are no inconsistencies among the outputs of non-actively corrupted players (however,
some of them might output a special symbol “n/v”, denoting that they have no output-
value).9 On a high level, the protocol works as follows: each pi sends his input along
with his signature on it to every party pj ; subsequently, every pj forwards all the re-
ceived values/signatures to every pk, who uses the received signatures to detect passive
corruption (see Remark 2). Each pk checks if his view is consistent with pre-agreement
on some value x; if this is the case, then he outputs x, otherwise he outputs “n/v”.

GradeConsistency In GradeConsistency each pi ∈ P outputs a pair (yi, gi) (along
with a (p,P)-acceptable signature on yi), where yi is pi’s actual output-value and gi ∈
{0, 1} is a bit, called pi’s grade. The grade gi has the meaning of the confidence level
of pi on the fact that agreement on yi has been reached. In particular, if gi = 1 for some
pi ∈ P \ A? then (pi knows that) yj = yi for every pj ∈ P \ A?. Moreover, when
the non-actively corrupted players pre-agree on a value x, then they all output x with
grade 1. The protocol GradeConsistency is included in the full version.

UseKing Here, there exists a distinguished player pk ∈ P , called the king. If pk ∈
P\A?, then every pj ∈ P outputs the same value yj = y along with a (p,P)-acceptable
signature on it (consistency). Furthermore, independent of whether or not the king is
correct, pre-agreement is preserved. The idea is simple: invoke GradeConsistency, and
have the king forward his output to every party pj , who adopts it when his grade (in
GradeConsistency) was gj = 0, and ignores it otherwise.

Broadcast We next describe our PCBA({p}) (aka Broadcast) protocol: First, protocol
Send is invoked. Subsequently, for k = 1, . . . , n, UseKing is invoked with king pk ∈
P . The input to the first iteration of UseKing is the state which is output from Send,
whereas for k = 2, . . . , n the input to the kth iteration of UseKing is the output of the
(k−1)th iteration. If p ∈ P \A? then the well-formness of the state (Lemma 3) ensures
that from the first iteration of UseKing all pi ∈ P \ A? have as input the input-bit of p,
and the {p}-validity property of UseKing ensures that this agreement will be preserved
in all iterations. In any case, C(5)

PCBA(P,Z, {p}) ensures that there is at least one honest
player p` ∈ P; at the latest during the iteration of UseKing with king p`, agreement
on the output will be achieved (king consistency), which is maintained in all future
iterations of UseKing ({p}-validity).

Lemma 4. Assuming that no signature is forged and the condition C(5)
PCBA(P,Z, {p})

holds, the protocol Broadcast(P,Z, p, x) Z-securely realizes PCBA({p}) (i.e, Broad-
cast with sender p).

9 Observe that “n/v” is not the same as ⊥.
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5.2 PCBA(C) for an arbitrary |C| ≥ 1

Using our PCBA({p}) protocol, i.e., protocol Broadcast, we can achieve PCBA(C) for
an arbitrary C ⊆ P . The corresponding protocol, denoted as PCBAC , is described in the
following; the input of each pi ∈ C is denoted as xi.

Protocol PCBAC(P,Z, x1, . . . , x|C|)
1. Every pi ∈ C uses Broadcast to Broadcast xi.
2. For each pj : if |C| = 1, then output the broadcasted value; otherwise, if there exists

unique x s.t. ∃(A,E) ∈ Z : {pi | xi 6= x} ⊆ A then output x, otherwise output 0.

Lemma 5. Assuming that no signature is forged, if the condition C(5)
PCBA(P,Z, C) ∧(

(|C| = 1)∨C(2)
a (P,Z, {p})

)
holds for a set C ⊆ P , then the protocol PCBAC perfectly

Z-securely realized PCBA(C).

6 Extension: Adding Fail Corruption

We extend the definition of PCBA to consider an adversary who can actively, pas-
sively and fail corrupt players, simultaneously. In this setting, a general adversary is
described by a structure which is a collection of triples (instead of pairs) of player sets,
Z = {(A1, E1, F1), . . . , (Am, Em, Fm)}, where the adversary of class (A,E, F ) ac-
tively corrupts the players in A, passively corrupts the players in E, and fail corrupts
the players in F . Consistently with our previous notation, we denote by (A?, E?, F ?)
the class corresponding to the adversary’s actual corruption choice. To simplify the no-
tation, we assume that A ⊆ F (anyway, an actively corrupted player can behave as
being fail corrupted). We say that a player is alive at a certain point of the protocol if
he has not crashed until that point. Note that a fail corrupted player is both correct and
alive until the point when he crashes. In the following we give the definition of player-
centric BA in this extended model and prove an exact feasibility bound for PCBA(P)
(aka Consensus) for computational security assuming a trusted PKI.

A natural question which arises when fail corruption is considered in PCBA is how
the inputs of fail corrupted players are accounted in the validity condition. Following
the intuition that a fail corrupted player never gives a wrong input (but might give no
input) we extend the definition of PCBA as follows: every pi has input xi and the goal
is to agree on an output-value y, such that if every pi ∈ C \ A? who is alive at the
beginning has the same input xi = x then y = x. More formally, let C ⊆ P; we say that
a protocol perfectly Z-securely realizes PCBA(C), if it satisfies the following properties
in the presence of a Z-adversary:

– (Consistency) There exists some y such that every player pi who is correct until the
end of the protocol outputs y.

– (C-Validity) If every pi ∈ C\A? who is alive at the beginning of the protocol has the
same input xi = x, then every (alive) pj ∈ P \ A? outputs y ∈ {x, “n/v”}, where
y = x, unless all players in C \A? have crashed during the protocol execution.

– (Termination) For pi ∈ P \ A? the protocol terminates after a finite number of
rounds.

10



When a protocol satisfies the above properties except with negligible probability in
the presence of a computationally bounded (resp. unbounded) adversary, then we say
that the protocol computationally (resp. statistically) Z-securely realizes PCBA(C).
PCBA(P) (Consensus) We next give an complete characterization of tolerable adver-
saries for computationally secure PCBA(P) (Consensus) in our model. Recall that the
corresponding bound for (perfect) security without a setup can be derived in a straight-
forward manner from [1] (see [5] for details). The necessary and sufficient condition is
stated in the following theorem which is proved in the full version of this paper:

Theorem 3. Assuming |P| ≥ 3, if a setup allowing digital signatures is given, then a
set of players P can computationally Z-securely realize Consensus if and only if the
following condition holds: ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : A1∪A2∪((
(E1 ∩ F1) ∪ (E2 ∩ F2) ∪ (E1 ∩ E2)

)
∩A3

)
∪ (F1 ∩ F2 ∩ F3) 6= P .

7 Conclusions and Open Problems

Most existing definitions of Byzantine Agreement are of an all-or-nothing type. Moti-
vated by the above observation, we introduced a new class of player-centric BA primi-
tives, denoted as PCBA = {PCBA(C)}C⊆P , which is parametrized by non-empty sub-
sets C of the player set. For each PCBA(C) ∈ PCBA, the validity condition depends on
the inputs of the players in C. We proved general negative and positive results, which as-
sociate feasibility of PCBA for different choices of the set C. Furthermore, for a general
active/passive adversary we proved exact feasibility bounds for PCBA for any choice of
the set C, for all three security levels, i.e., perfect, statistical, and computational. More-
over, we showed that there might be adversaries who can be tolerated for some specific
sender p to broadcast his input, but not for any p′ ∈ P being the sender.

As an extension of our results we provide a definition of PCBA tolerating an ac-
tive/passive/fail adversary and prove an exact bound for PCBA(P) (aka Consensus) in
this model. A complete characterization of PCBA for an arbitrary set C in this extended
model is an interesting research direction. However, the unexpectedly high complexity
of the tight bound for Consensus gives some evidence that such a characterization might
be too complicated, and raises the question whether one should look for a different tri-
chotomy of corruption types.
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